
Future Generation Computer Systems 17 (2001) 745–754

Parallelization of local BLAST service on workstation clusters

R.C. Braun, K.T. Pedretti∗, T.L. Casavant, T.E. Scheetz, C.L. Birkett, C.A. Roberts
Coordinated Laboratory for Computational Genomics, Department of Electrical and Computer Engineering,

University of Iowa, Iowa City, IA 52242, USA

Abstract

This paper describes approaches to improve the performance of one of the most common and increasingly important aspects
of the Human Genome Project (HGP) — large-volume, batch comparison of DNA sequence data. This basic comparison
operation, usually carried out by the well-known BLAST program on one subject sequence against the internationally available
databases of nearly five million target sequences, is already used hundreds of thousands of times each day by researchers
around the world. At present, it is still used primarily in single query, or small batch query mode. As the entire sequence of the
human genome nears completion, the area of functional genomics, and the use of micro-arrays of sets of genes, is coming to
the fore. These developments will demand ever more efficient means of BLASTing sets of data that will make single processor
implementation on powerful workstations infeasible. We describe the three primary parallel components to BLAST. The first
is at the sequence-to-sequence comparison level. The second parallelizes a single query across a partitioned and distributed
database. Finally, the set of queries themselves are partitioned across a set of servers with replicated or partitioned databases.
The three methods may be employed alone or in concert. Our current implementation is described which parallelizes batch
requests, and our plans for implementation of the other levels is also described. The results will ultimately be applied to
hardware assistance for this soon-to-be primitive computer operation. © 2001 Elsevier Science B.V. All rights reserved.

Keywords:Parallel cluster application; Genome project; BLAST; Heterogeneous parallelism; Network computing

1. Introduction

Modern genome sequencing, discovery and
mapping research effortsare parallel/distributed pro-
cessing systems. The processing involved is computa-
tionally demanding, but the basic nature of the entire
process of gene discovery and understanding is highly
parallel, heterogeneous, and distributed. To date, the
dominant component of thehuman genome project
(HGP) has been the discovery of the entire three billion
base pairs of sequence of the human genome. This has
been a worldwide parallel/cooperative effort in which
the dimensions of parallelism have been drawn at the

∗ Corresponding author.
E-mail addresses:pedretti@eng.uiowa.edu, genome@eng.uiowa.
edu (K.T. Pedretti).

boundaries of organisms (e.g., human, mouse, rat, C.
elegans, etc.) [1–3], and chromosomes of these organ-
isms. However, close examination of this phase of the
effort reveals that the parallelism being exploited is
mostly at the job-level [4]. Partitioning of the sequenc-
ing effort along organism and chromosomal lines
requires only very rudimentary parallel task structure,
inter-process communication (IPC) and synchroniza-
tion (e.g., often via human examination of WWW sites
displaying similar regions of differing organisms).

As the entire sequence of the human genome nears
completion (draft expected in 2000, and finished se-
quence expected in 2003), the frequency and intensity
of inquiries against this data will expand exponen-
tially. The area offunctional genomicswill require
batch processing of large numbers of requests to iden-
tify homologous groups of sequences. The current

0167-739X/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(00)00057-1



746 R.C. Braun et al. / Future Generation Computer Systems 17 (2001) 745–754

Fig. 1. Three levels of parallelism exploitable in large batch BLAST processing.

mode used by 90% of researchers is to submit sin-
gle queries for comparison of a segment of sequence
data (a subject string of 300–600 characters) against
one or more databases being served at a national
or international repository. The most common such
repository is GenBank which is housed in the Na-
tional Center for Biotechnology Information (NCBI)
at the National Institutes of Health (NIH) in Bethesda,
MD, USA. (Two other large repositories also exist —
one in Europe and one in Japan.) The most common
sequence comparison tool is the well-known Basic
Local Alignment Search Tool (BLAST) [5] program,
which is also available for download for local exe-
cution. While it is possible for anyone to download
the contents of GenBank (as of October 1999 con-
taining 3 841 163 011 bases, from 4 864 570 reported
sequences) for processing of queries on a dedicated
server, this is rarely done. Rather, many thousands of
single queries “hit” a large bank of database server
systems at NCBI on a daily basis. Not only does this
cluster of servers continue to diminish in its abil-
ity to serve the ever mounting numbers of requests,
but the network traffic generated by this load is also
becoming intolerable. The databases themselves are
growing at an increasing rate, and single queries on a
dedicated high-performance system can also be time
consuming. While some efforts have been made in
the past to parallelize BLAST searches, none of the
methods exploit all levels of available parallelism, and
none of these tools has been implemented for easy

public access. Lastly, a comprehensive understanding,
and a robust, near-optimal solution to this problem is
a necessary first step toward development of parallel
architectures, and hardware assists for this soon-to-be
ubiquitous and primitive computer operation.

In this paper, we describe a comprehensive approach
to exploitation of three distinct types of parallelism in
BLAST searches. The three types derive from various
granularities of searches, and different inherent paral-
lel aspects of BLAST searching. Fig. 1 summarizes
the three complementary approaches.

Conceptually, the lowest level involves speeding up
the comparison of a single pair of DNA sequences —
a subject and target — by performing all the align-
ments of the comparison in parallel. These operations
may be performed in an “embarrassingly parallel”
manner with no data dependencies between them. It
should be noted that this lowest level may be best
performed on a node with special parallel capabili-
ties as well — beyond those of the typical symmetric
multi-processor (SMP) system. In the second case, a
large target database can be partitioned into subsets,
and distributed to the static (disk) storage devices of
a cluster of workstations — possibly replicating each
subset some number of times on several nodes of the
cluster. Single queries would then be replicated to
the multiple nodes and the comparisons against each
partition of the database would proceed in parallel.
While non-trivial, the merging of the results is feasible,
and can be done efficiently at an appropriate level of



R.C. Braun et al. / Future Generation Computer Systems 17 (2001) 745–754 747

granularity. Finally, if a large set of queries is to be
processed in a “batch” mode, partitioning of the mul-
tiple query requests can also be done to allow even
more parallelization.

Our current implementation exploits only the last
of these three approaches in production. Implementa-
tion of the second method is nearly complete and is
expected to be deployed in December 1999. The final
level is a subject of further research. The eventual
goal is to implement all three of these granularities in
a hybrid cluster-server architecture for use in the lo-
cal BLASTing of expressed sequence tag (EST) and
functional genomics study at the University of Iowa.
All developed software would be made available
to the research community. Architecture enhance-
ments to greatly improve exploitation of fine-grained
parallelism will be a natural extension of this
work.

2. Background

BLAST is a heuristic search algorithm employed by
a number of genetic search tools. These tools are used
by researchers to identify similarity between genetic
sequences. Typically, there is an input sequence that
is BLASTedagainst a database of known sequences —
the target set. The result of a BLAST search is a list
of sequences from the target set that were found to
have significant regions matching regions of the in-
put sequence. In large-scale sequencing projects, this
data can be useful to determine if a particular se-
quence has already been discovered or if contamina-
tion has occurred. BLAST can also be useful in a
broader sense by providing insight into a sequence’s
function by matching it with some sequence of known
function.

The specific implementation of BLAST used at the
University of Iowa is NCBI BLAST (freely available
from ftp://ncbi.nlm.nih.gov/blast). NCBI BLAST rec-
ognizes two types of sequences:nucleotideandpep-
tide. Both sequence types are represented as a string
of ASCII characters. Nucleotide sequences are made
up of four letters (A, T, C, and G). These represent
the four bases in DNA — adenine, thymine, guanine,
and cytosine. Thus, a short nucleotide sequence in-
put into BLAST might be ACCTGACTACCT. This
string also codes for the complementary DNA strand

TGGACTGATGGA (A bonds with T, and C bonds
with G). One can imagine these two sequences of nu-
cleotides being placed in parallel and then twisted to
create the familiar DNA double helix. For nucleotide
to nucleotide queries, NCBI BLAST takes the comple-
mentary strand of the query into account when search-
ing. A peptide sequence (a protein sequence) is also
made up of a string of letters but, in this case, each
represents one of 20 amino acids. Peptides are en-
coded by triplets of nulceotides, as specified by the
genetic code. There are three possible reading frames
(+0, +1, +2) in both directions, and therefore, there
are six ways to translate a nucleotide sequence into a
peptide sequence.

The NCBI BLAST distribution contains five varia-
tions of BLAST —blastn, blastx, tblastx,
blastp, and tblastn . blastn compares a nu-
cleotide sequence against a nucleotide database and is
relatively quick.blastx compares a nucleotide se-
quence against a protein database. To do this, the nu-
cleotide subject needs to be translated into a peptide
sequence. Since there are six different translations, the
basic BLAST algorithm must be applied six times to
complete the query. Likeblastn, tblastx com-
pares a nucleotide sequence to a nucleotide database
only in this case each is translated (in all six reading
frames) into a peptide sequence before BLASTing.
This is the most computationally intensive of the blast
programs since the BLAST algorithm must be invoked
36 times for each sequence to sequence comparison.
blastp compares a peptide sequence to a peptide
database and is relatively quick.tblastn compares
a peptide sequence against a nucleotide database. As
with blastx , each sequence to sequence comparison
requires six calls to BLAST.

A sample output from ablastn BLAST run is
shown in Fig. 2. The query sequence was 296 bases
long and 15 sequences were found to have signifi-
cant alignments. The two figures of merit for an align-
ment are itsscoreandE value. Long matches get high
scores. In the sample output, the hit that matched 296
bases received a score of 587 while the hit that matched
13 bases only received a score of 26. TheE value (or
“expect” value) represents the number of significant
alignments one would expect to see by chance. It is
dependent on the size of the target database and it de-
creases exponentially with score. AnE value of zero
is ideal.



748 R.C. Braun et al. / Future Generation Computer Systems 17 (2001) 745–754

Fig. 2. Sample BLAST output.



R.C. Braun et al. / Future Generation Computer Systems 17 (2001) 745–754 749

3. Approach and options

3.1. Local BLAST

Although NCBI, along with several other research
centers, maintains public BLAST servers, these have
their limitations. Foremost, depending on the applica-
tion, is the speed at which the searches are performed.
During peak times, the servers become extremely sat-
urated. Many projects rely on data being processed in
a timely manner. In such cases, this possible delay and
reliance on an outside provider is unacceptable. Addi-
tionally, the databases which can be selected for use,
although current, are limited to those available on the
remote server. The ability to create custom, real-time
databases to BLAST against, is increasingly becom-
ing a necessity for many projects. For these reasons,
local installation of a BLAST server and the basic set
of public databases is essential for any large-scale se-
quencing or functional genomics effort.

3.2. Local parallel BLAST

Given the need for local BLAST services, the need
to complete these searches in a timely manner be-
comes evident. Parallelizing the BLAST algorithm
pays dividends by effectively reducing the processing
time in relation to the number of compute nodes uti-
lized. In addition to reducing the processing time, in
some cases parallelizing can reduce costs by utilizing
commodity workstations and even PCs. Finally, a lo-
cally scheduled parallel algorithm allows for prioriti-
zation and a level of control over individual searches
not afforded by any other option.

3.3. Types of parallelization

Three basic approaches to parallelizing BLAST
can be readily identified, and are currently in various
stages of implementation at Iowa. They are summa-
rized in Fig. 1, and are described below.

3.3.1. Pairwise multiple alignment parallelization
The notion of multiple alignments of a single pair

of DNA subsequences was described in Section 2. It is
clear that if two subsequences are to be compared — of
lengthsn andm, respectively — then there are O(n ×
m) possible alignments to be examined for possible

similarity for the pair. Since these comparisons are
mutually independent, the parallelization of the com-
parisons is potentially very efficient. The granularity
of this operation is such that effective implementation
would greatly benefit from specialized hardware, or a
large-scale MPP system with a custom interconnect.
Implementation on a modest-sized SMP would be fea-
sible using threads. However, single nodes of a cluster
utilizing this level of parallelism could possibly be an
IBM SP-2 class system. Of greatest importance would
be a high-speed, low-latency interconnection network
to allow rapid selection and scoring of the best possible
alignment.

3.3.2. Database (target set) partitioning
The next larger grain of parallelization involves dis-

tributing “chunks” of the database(s) across a collec-
tion of compute nodes. This allows for less demanding
memory requirements as smaller pieces of the database
are held in persistent storage, and loaded into mem-
ory of each node. Additionally, when not at peak load
across compute nodes, individual jobs can be com-
pleted much more quickly as the power of multiple
nodes is leveraged. In this scheme, a master node coor-
dinates the scheduling of jobs and collates the results
from each submission. A typical scenario might in-
volve 8–10 workstations with several different chunks
of the database, which may have been broken into 4–6
pieces. This will allow for a useful level of redundancy
for robustness and reliability, and to incrementally add
compute power as databases grow, and more queries
are being submitted.

3.3.3. Batch query (subject set) partitioning
The largest grain method of parallelization in-

volves batch processing and scheduling of sets of
queries, while keeping full copies of the database
stored on each compute node. While this does not
reduce the time for an individual search to complete,
it is quite effective when used in situations where
multiple searches need to be performed in a sus-
tained way on a daily basis, or at the same time.
Several methods of optimization can be used when
scheduling, including prioritization of interactive jobs
if necessary. One disadvantage of this method is the
large amount of memory still necessary to allow
the entire database to be stored and loaded on each
node.



750 R.C. Braun et al. / Future Generation Computer Systems 17 (2001) 745–754

4. Current implementation

To date, only the coarse-grained batch approach has
been implemented and used in a production setting.
This allows for efficient processing of daily workloads
generated by the many ongoing large-scale sequencing
projects at the University of Iowa [6,7]. Without this
system in place, it would be impossible to complete
BLASTing each day’s sequence data within a 24 h
period. This course-grained approach is detailed in the
following section.

The medium-grained implementation is nearing
completion and is scheduled to be deployed in a
limited fashion in December 1999. Only the in-
terfacing and automation components remain to
be completed, and most of these will be shared
with the already in place course-grained architec-
ture. The non-trivial changes required to extend the
course-grained solution are outlined at the end of this
section.

4.1. The batch scheduler

The foundation of the local batch BLAST system is
the Portable Batch System (PBS) developed for NASA
for their diverse set of high-performance computing
resources [8]. At the University of Iowa, this system
is used to manage an on-site heterogeneous cluster of
SUN, HP, and SGI workstations. In addition, PBS can
be used with commodity architectures such as Intel
PCs. Such systems, when combined with powerful op-
erating systems such as Linux, allow for the low-cost,
high-performance addition of computer resources to a
local batch BLAST system. A recent addition to the
compute power to be used on this project at the Uni-
versity of Iowa is a 16 node Pentium III Linux clus-
ter. These high-performance machines with Gigabit
Ethernet will provide a tremendous leap in comput-
ing power which will be managed by the PBS sched-
uler. A PBS system consists of three distinct parts:
the job server, thescheduler, andcompute nodes(see
Fig. 3).

4.1.1. Server
The PBS job server is responsible for managing a

queue of incoming jobs. In the current system, all jobs
are BLAST jobs but this need not be the case. Other
computationally intensive jobs such as sequence clus-

tering and the creation of radiation hybrid maps can
just as easily share computing resources with BLAST.
There are currently two job queues in the system, one
for batch BLAST jobs and a second for jobs interac-
tively submitted to the Local BLAST Server through
a web interface.

4.1.2. Scheduler
The PBS scheduler applies a scheduling algorithm

to allocate compute nodes to jobs in the two incoming
job queues. Some compute nodes in the current clus-
ter of workstations have several CPUs and therefore
can handle more than one simultaneous BLAST job.
The PBS scheduler knows about this and will assign
multiple jobs to such nodes.

4.1.3. Compute nodes
Each compute node has a PBS node monitor run-

ning on it that communicates with the PBS job server.
This allows the server to query the node for job sta-
tus information and also ensure that the node is still
on-line. Should a node go off-line, the PBS job server
marks it as down and the scheduler ceases to schedule
jobs to it. Each compute node has its own set of the se-
quence databases. This requires that nodes each have
enough disk storage for the databases in use (currently
over 2.5 GB).

4.2. Job types

There are two types of jobs that are submitted to
the Local BLAST Server: batch and web. Batch jobs
can be executed at any time and can be restarted if
necessary. Web jobs are created when users submit
BLAST jobs via the UI Local Blast Web Interface.
These are time-critical and should therefore have pri-
ority over batch jobs. Ideally, if a web job arrives and
all of the compute nodes are busy executing batch
jobs, one of the batch jobs should be rescheduled
and the web job should take its place on the com-
pute node. If possible, the batch job should be check
pointed before being interrupted so that no work is
lost.

In the current implementation, we have opted for
an approach in which only 75% of the compute nodes
are allowed to execute batch jobs. The remaining
25% of the compute nodes are always available for
time-critical web jobs. If there are no batch jobs



R.C. Braun et al. / Future Generation Computer Systems 17 (2001) 745–754 751

Fig. 3. Software architecture of current implementation.

executing, then 100% of the computing resources are
available for web jobs. Although this approach limits
the overall throughput for both web and batch jobs
under heavy loads, it means that neither will ever be
starved of resources. Although this was meant to be a
short-term implementation, our experience to date has
led us to maintain this as our continuing production
configuration.

One of the benefits of using PBS is that it is rela-
tively easy to write a custom scheduling algorithm. We
are currently developing a scheduling policy that in-
terrupts executing batch BLAST jobs when web jobs

arrive. In addition, once a more fine-grained paral-
lel BLAST has been deployed, it will be possible to
speedup individual web jobs by allocating them to a
group of compute nodes. PBS allows for this flexibil-
ity. There are a number of different scheduling poli-
cies and database “chunk” distribution strategies that
we are evaluating.

4.3. Database updates and performance tuning

It is critical that all of the replicated databases on
the compute nodes in the Local BLAST Server are



752 R.C. Braun et al. / Future Generation Computer Systems 17 (2001) 745–754

updated periodically to reflect the most recent con-
tents of the globally shared databases. In addition, it
is also necessary to assure that all nodes’ copies of
the database(s) are consistent with each other. Other-
wise, the results obtained from a BLAST query would
depend upon the compute node on which it was ex-
ecuted. In the current implementation, we have cho-
sen to replicate databases in their entirety on each of
the compute nodes. This is a trade-off between perfor-
mance and the ease of maintaining database consis-
tency. At the time of implementation, it was decided
that using some sort of networked file system would
be too large a bandwidth bottleneck given the large
database sizes. However, the databases themselves are
now reaching sizes that are making full replication
less attractive. These databases not only consume (and
require) large amounts of local disk space on each
node, but they also require large amounts of internet,
and intranet bandwidth at the time of updating. The
intranet load is particularly problematic. If the local
bandwidth consumed to update replicated databases
becomes substantial, it will eventually interfere with
the ability of the system to serve actual requests for
BLAST service from the PBS scheduler.

As an alternative, with faster commodity networks
such as Gigabit Ethernet, and with large file system
caches on each node, the performance penalty of a
networked file system solution may not be as large
now as it was when that initial decision was taken.
Such a network has recently been put into production
at the Coordinated Laboratory for Computational Ge-
nomics at the University of Iowa. This may acceler-
ate consideration of a change in strategies, as comput-
ing attributes which were once a liability become a
strength. A hybrid solution which we are pursuing, is
to have severalI/O serversin the system, each with
a complete copy of the database set in a switched par-
tition of the intranet. Compute nodes would rely on
these I/O servers for access to the databases. As long
as the ratio of compute nodes to I/O nodes is below a
computed threshold, the performance loss should be
negligible. As compute nodes are added to the Local
BLAST Server, such a system will be necessary since
the network traffic caused by database updates will be-
come excessive. These issues, as well as others, will
need to be addressed continuously as networked archi-
tectures for local intranet BLAST service continue to
evolve.

4.4. Medium-grained implementation

The partitioned database implementation utilizes
many of the scheduling and interface concepts devel-
oped for the course-grained implementation, but adds
a new set of tools to deal with the more complex
logistics and operations.

The PBS based scheduler remains in place, and is
capable of dealing with the multiple jobs required to
complete a single BLAST query. By specifying what
nodes have what segments of the database, the sched-
uler can select the proper machines to execute the
queries on. If the database were split into four seg-
ments, a job submission to PBS requesting it to be
run on a node with each segment would result in four
BLAST outputs.

These outputs then must be combined into a sin-
gle output file which should appear identical to that
which would be produced by a single node with
the complete database. This non-trivial merge opera-
tion is the centerpiece of this implementation. Once
the results have all been received, the merge pro-
gram must parse, sort, and correct the data from the
nodes.

This merge operation is accomplished through soft-
ware developed for this purpose at the University of
Iowa. Written in PERL, the software acceptsn-input
files and performs the merge operation using only the
data from these files. No additional processing or out-
side data is necessary, and processing time for this
operation is negligible.

Since the queries are naturally divisible, no expen-
sive computations are required during the merge. First,
then-input files are parsed by section. The total num-
ber of sequences and letters in the database is calcu-
lated as the sum of the numbers indicated by the in-
put files. The summary and detailed match sections
are then sorted by score. Finally, theE values are cor-
rected to reflect the larger combined database size.
This is a simple operation based on the ratio of current
database to combined database size. Finally, the statis-
tics at bottom are corrected and the output file is cre-
ated. Except for insignificant ordering differences, the
output exactly matches that which would have been
created by a single node, single database query. This
final output can then be saved to disk in batch mode
or delivered to the user in interactive, single query
mode.



R.C. Braun et al. / Future Generation Computer Systems 17 (2001) 745–754 753

5. Status and discussion

The Coordinated Laboratory for Computational
Genomics at the University of Iowa currently op-
erates 10 sequencing systems, three shifts per day,
with 96 sequencing lanes each. At full capacity, 2880
sequences are generated each day. Of these, approx-
imately 80% would be expected to pass through an
initial verification step and move on to be BLASTed.
The length of a typical sequence is about 450
bases.

The daily sequence dataset has BLAST run on it
three times. First,blastn is run against the NCBI
non-redundant nucleotide databasent (404 657 se-
quences). Second,blastx is run against the NCBI
non-redundant peptide databasenr (356 412 se-
quences). Finally,tblastx is run against the NCBI
non-redundant nucleotide databasedbest (2 119 879
sequences). Theblastn and blastx queries
are relatively quick and take a minute at most.
The tblastx queries take substantially longer —
averaging about 15 min each.

For a daily load of 2310 sequences, running
tblastx alone would take approximately 576 h
(over 3 weeks) on a single CPU. Clearly, there is a
need for some level of parallelism. In the current im-
plementation, there are 25 CPUs in the Local BLAST
Server. This can handle the maximum daily load,
requiring about 20 h to run thetblastx program.
As the number of sequences generated each day in-
creases, it will be a simple matter to add compute
nodes to the Local BLAST Server.

Thus far, the compute load generated by the web
interface to the Local BLAST Server has been negli-
gible compared to the batch service load. This trend is
likely to continue in the future because users generally
run quick programs such asblastn and blastp
when using this interface. If the load were to in-
crease significantly, it would again be straight forward
to modify the scheduling policy to favor web jobs
more. Alternatively, more compute nodes could be
purchased.

6. Conclusion

As projects such as the Human Genome Project
near completion, the size of sequence databases and

the frequency of BLAST queries against them will
grow exponentially. In this paper, we have discussed
three ways to exploit parallelism in BLAST searches.
A coarse-grained approach has been described that
is currently in production use at the University
of Iowa. Without such a system, it would be im-
possible to meet the daily computational demands
of BLAST searches. Work on a medium-grained
solution is nearing completion and is scheduled
to be put in production in December 1999. A
fine-grained solution has been outlined for future
research.

References

[1] Deparment of Energy, Five years of progress in
the Human Genome Project, Human Genome News
7 (3/4) (1995). Available at www.ornl.gov in Tech-
Resources/HumanGenome/publicat/hgn/v7n3/04progre.html
(September, 1997).

[2] J.A. Blake, J.E. Richardson, M.T. Davisson, J.T. Eppig, The
Mouse Genome Database (MGD), a comprehensive public
resource of genetic, phenotypic and genomic data, Nucleic
Acids Res. 25 (1) (1997) 85–91.

[3] M. Berks, The C. elegans genome sequencing project, Genome
Res. 5 (1995) 99–104.

[4] R.W. Hockney, C.R. Jesshope, Parallel Computers 2:
Architecture, Programming, and Algorithms, IOP Publishing,
Philadelphia, PA, 1988.

[5] S. Altschul, T. Madden, A. Schäffer, J. Zhang, Z. Zhang, W.
Miller, D. Lipman, Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs, Nucleic Acids
Res. 25 (1997) 3389–3402.

[6] T.E. Scheetz, C.L. Birkett, T.A. Braun, D. Nishimura,
V.C. Sheffield, M.B. Soares, T.L. Casavant, Informatics for
preparation of EST reads in a mixed-tissue cDNA library
setting, in: Proceedings of the 1998 Meeting on Genome
Mapping, Sequencing, and Biology, Cold Spring Harbor, New
York, Departments of Electrical and Computer Engineering,
Pediatrics, Physiology and Biophysics, University of Iowa,
Iowa City, IA, 205 pp.

[7] M.B. Soares, G. Beck, B. Berger, C.L. Birkett, E.A. Black, M.F.
Bonaldo, R.C. Braun, T.A. Braun, M. Donahue, S. Kaliannan,
R. Kincaid, V. Miljokovic, K.J. Munn, D. Nishimura, K.T.
Pedretti, T.E. Scheetz, L.H. Stier, T.L. Casavant, V.C. Sheffield,
A program for rat gene discovery and mapping, in: Proceedings
of the 1998 Meeting on Genome Mapping, Sequencing, and
Biology, Cold Spring Harbor, New York, Departments of
Electrical and Computer Engineering, Pediatrics, Physiology
and Biophysics, University of Iowa, Iowa City, IA, 212 pp.

[8] D.G. Feitelson, L. Rudolph (Eds.), Job Scheduling Under the
Portable Batch System, Lecture Notes in Computer Science,
Vol. 949, Springer, Berlin, 1995.



754 R.C. Braun et al. / Future Generation Computer Systems 17 (2001) 745–754

Ryan Carl Braun received his BS degree
in Electrical Engineering from the Univer-
sity of Iowa in 1999. During his under-
graduate program, he performed research
in the Coordinated Laboratory for Com-
putational Genomics. He is currently em-
ployed by the Enterprise Systems Group of
Dell Computer Corporation. His research
interests include parallel and distributed
processing, computer networking, and op-

erating systems.

Kevin Thomas Pedretti received his BS
degree in Electrical Engineering from the
University of Iowa in 1999. He is currently
enrolled in the Electrical and Computer
Engineering graduate program at the Uni-
versity of Iowa and performs research at
the Coordinated Laboratory for Computa-
tional Genomics. His research interests in-
clude parallel and distributed processing,
Beowulf-style commodity computing, and

DNA sequence clustering and analysis.

Thomas Lee Casavantreceived his BS
degree in Computer Science, his MS de-
gree in Electrical and Computer Engineer-
ing, and his PhD degree in Electrical and
Computer Engineering from the Univer-
sity of Iowa in 1986. From 1986 to 1989
he was with the School of Electrical Engi-
neering at Purdue University. In 1989, he
joined as the faculty of the University of
Iowa where he is presently a Professor of

Electrical and Computer Engineering, and Director of the Coor-
dinated Laboratory for Computational Genomics and the Parallel
Processing Laboratory. Dr. Casavant has published over 70 tech-
nical papers on parallel and distributed computing, and computa-
tional genomics, and has presented his work at tutorials, invited
lectures, and conferences in the United States, Asia and Europe.
Dr. Casavant is a senior member of the Institute of Electrical and
Electronics Engineering (IEEE). He has served on the editorial
boards of IEEE Transactions on Parallel and Distributed Process-
ing and the Journal of Parallel and Distributed Computing (JPDC).

His current research interests include large-scale methods for gene
discovery, mapping, and disease gene identification, parallel com-
puter architecture, scheduling, trace recovery, and visualization.

Todd Edward Scheetzreceived his BS de-
gree in Electrical Engineering in 1993 and
his MS degree in Electrical and Computer
Engineering from the University of Iowa
in 1995. He is currently enrolled in the
PhD program in Genetics at the University
of Iowa. Research interests include bioin-
formatics, parallel and distributed process-
ing, and operating systems.

Clay Birkett received his BS in Electrical
Engineering from Virginia Technology in
1985. He worked as a Biomedical Engi-
neer for 2 years at the Veterans Admin-
istration Hospital of Richmond, VA. In
1987 he moved to Iowa City, IA, where
he worked for 8 years as a Biomedical
Engineer in the Department of Cardiology
at the University of Iowa Hospital. In the
Cardiology Department he did research in

nerve recording analysis, cardiac defibrillation, and intra-arterial
imaging. In 1991 he received his MS in Biomedical Engineer-
ing from the University of Iowa. Since 1997 he has worked as
a Senior Programmer Analyst at the University of Iowa in the
Department of Electrical Engineering. He is currently working in
the Computational Genomics Laboratory on gene discovery and
mapping projects.

Chad Andrew Roberts received his BA
degree in Mathematics from the University
of Iowa in 1993. He is currently a staff
member at the Coordinated Laboratory for
Computation Genomics at the University
of Iowa.


